Counting and Computing Rational Points on Surfaces

Jerson Caro Boston University

Rational Points 2025 Schloss Schney July 30 of 2025

Part I: The method of Chabauty and Coleman for curves

Rational points on curves of genus $g \geq 2$

Let C/\mathbb{Q} be a smooth projective curve of genus $g \geq 2$ with Jacobian J.

- Mordell's conjecture 1922: $C(\mathbb{Q})$ is finite.
- Chabauty's theorem '41: If $\operatorname{rk} J(\mathbb{Q}) < g$, then $C(\mathbb{Q})$ is finite.
- Faltings's theorem '83: Mordell's conjecture is true.

Sketch of Chabauty's proof

Take $x_0 \in C(\mathbb{Q})$, if any. Embed C into J via $x \mapsto [x - x_0]$. Let $r = \operatorname{rk} J(\mathbb{Q})$.

- Let Γ be the *p*-adic closure of $J(\mathbb{Q})$ in $J(\mathbb{Q}_p)$. It is a *p*-adic Lie subgroup of $J(\mathbb{Q}_p)$.
- The theory of *p*-adic Lie groups implies that dim $\Gamma \leq r$.
- Hence, dim $\Gamma < g = \dim J$.
- $C(\mathbb{Q}_p)$ generates $J(\mathbb{Q}_p)$, so it is not contained in Γ .
- It follows that $C(\mathbb{Q}_p) \cap \Gamma$ is finite.
- Finally, note that $C(\mathbb{Q}) = C(\mathbb{Q}_p) \cap J(\mathbb{Q}) \subset C(\mathbb{Q}_p) \cap \Gamma$.

Chabauty-Coleman bound

Coleman reinterpreted $\Gamma \cap C(\mathbb{Q}_p)$ as zeros of p-adic analytic functions on $C(\mathbb{Q}_p)$ constructed by integrating differentials.

Theorem (Coleman 1985)

Let C/\mathbb{Q} be a smooth projective curve of genus $g \geq 2$ and p a prime of good reduction for C. We assume:

- p > 2g,
- Dimension inequality: $\operatorname{rk} J(\mathbb{Q}) + 1 \leq g$,

then

$$\#C(\mathbb{Q}) \leq \#C(\mathbb{F}_p) + 2g - 2.$$

Chabauty-Coleman beyond curves

What about a Chabauty-Coleman bound for X a higher dimensional variety?

We assume:

- X is hyperbolic and contained in an abelian variety A.
- Dimension inequality: $\operatorname{rk} A(\mathbb{Q}) + \dim X \leq \dim A$.

So far, only explored when A=J the Jacobian of a curve $\mathcal{C}\subset J$ and

$$X = \underbrace{C + C + \dots + C}_{d \text{ times}}$$
 (Essentially Sym^d C).

- Klassen '93: Finiteness on a p-adic open set.
- Siksek '09: Over number fields. Practical procedure for computations.
- Park '16: A conditional bound (not of Coleman type) under certain technical assumptions from tropical geometry.

Part II:

A Chabauty-Coleman bound for surfaces

Results over \mathbb{Q} - also available over number fields

Notation: For a smooth variety V with good reduction at p, the reduction is V'.

$Main\ Theorem(C-,\ Pasten\ '23)$

Let X be a nice surface of general type in an abelian variety A of dimension 3 over \mathbb{Q} , and let p be a prime of good reduction for X and A.

We assume:

- $p > (\frac{128}{9}) \cdot (c_1^2(X))^2$,
- $\operatorname{rk} A(\mathbb{Q}) \leq 1$ (Dimension inequality),
- X' contains no elliptic curves over \mathbb{F}_p^{alg} "finiteness".

Then

$$\#X(\mathbb{Q}) \le \#X'(\mathbb{F}_p) + \frac{p-1}{p-2} \cdot \left(p + 4p^{1/2} + 5\right) \cdot c_1^2(X)$$
 $< \#X'(\mathbb{F}_p) + 4p \cdot c_1^2(X)$

Recall: $c_1^2(X)$: Self-intersection of the canonical divisor K_X of X.

Results over \mathbb{Q} - also available over number fields

Main Theorem(C-, Pasten '23)

Let X be a nice surface of general type in an abelian variety A of dimension 3 over \mathbb{Q} , and let p be a prime of good reduction for X and A.

We assume:

- $p > (\frac{128}{9}) \cdot (c_1^2(X))^2$,
- $\operatorname{rk} A(\mathbb{Q}) \leq 1$ (Dimension inequality),
- X' contains no elliptic curves over \mathbb{F}_p^{alg} "finiteness".

Then

$$\#X(\mathbb{Q}) < \#X'(\mathbb{F}_p) + 4p \cdot c_1^2(X)$$

Remark: Compare to Coleman's bound for curves:

$$\#C(\mathbb{Q}) \leq \#C'(\mathbb{F}_p) + c_1(C).$$

Remark

- Plenty of examples when $\operatorname{End}(A_{\mathbb C})=\mathbb Z$, using a theorem of Chavdarov on primes of geometrically simple reduction. This works for instance on nice surfaces contained in the Jacobian of $y^2=x^7-x-1$.
- Main Theorem is also available when dim A > 3, but we need the existence of an ample divisor that satisfies a certain condition that depends on p, and an extra condition on A'.

Idea of the proof

Setup

• $\Gamma = \overline{A(\mathbb{Q})}$ is a *p*-adic analytic 1-parameter subgroup of $A(\mathbb{Q}_p)$. Note:

$$X(\mathbb{Q}) = X(\mathbb{Q}_p) \cap A(\mathbb{Q}) \subset X(\mathbb{Q}_p) \cap \Gamma.$$

• Reduction map: red: $A(\mathbb{Q}_p) \to A'(\mathbb{F}_p)$. For each residue disk $U_x = \operatorname{red}^{-1}(x)$ with $x \in X'(\mathbb{F}_p)$ we want to bound $\#X(\mathbb{Q}_p) \cap \Gamma \cap U_x$.

How to bound $\#X(\mathbb{Q}_p) \cap \Gamma \cap U_x$?

- Consider the analytic 1-parameter subgroup $\gamma: p \mathbb{Z}_p \to \Gamma \cap U_x$.
- Let f be a local equation for X on U_x . Then $f \circ \gamma(z)$ is a p-adic power series and

$$\#X(\mathbb{Q}_p)\cap\Gamma\cap U_x\leq n_0(f\circ\gamma(z),1/p).$$

- Write $f \circ \gamma(z) = \sum_n a_n z^n \in \mathbb{Q}_p[[z]]$.
- To bound $n_0(f \circ \gamma(z), 1/p)$ we have to find a small N such that $|a_N| \ge 1$.

This last requirement is main difficulty in the whole approach.

Large coefficient in low degree

Definition (ω -integral)

Let k be a field. Let Z, Y be k-schemes and $\omega \in H^0(Y, \Omega^1_Y)$. A k-morphism $\phi: Z \to Y$ is ω -integral if the composition

$$\phi^{\bullet}:H^0(Y,\Omega^1_Y)\to H^0(Y,\phi_*\phi^*\Omega^1_Y)=H^0(Z,\phi^*\Omega^1_Y)\to H^0(Z,\Omega^1_Z).$$

satisfies $\phi^{\bullet}(\omega) = 0$.

Notation: Let $k := \mathbb{F}_p^{alg}$ and $V_m := \operatorname{Spec} k[z]/(z^{m+1})$.

Suppose that there is m < p, such that $f \circ \gamma$ satisfies $|a_i| < 1$ for every i < m.

Then, there exists a closed immersion

$$\phi_m: V_m \to X_k,$$

at x which is w_i -integral for some $w_1, w_2 \in H^0(X_k, \Omega^1_{X_k/k})$ independent.

Large coefficient in low degree: the overdetermined method

• We need to bound the *m* such that the following holds: "There is a closed immersion

$$\phi: V_m \to X_k$$

at x which is w_i -integral for some $w_1, w_2 \in H^0(X_k, \Omega^1_{X_k/k})$."

• The "overdetermined" bound: We bound m in terms of the geometry of $D = \text{div}(w_1 \wedge w_2)$.

Geometric bounds for ω -integral curves

Let S be a smooth surface over k, let $x \in S$, let $w_1, w_2 \in H^0(S, \Omega^1_{S/k})$ be independent over \mathcal{O}_S and let $D := \operatorname{div}(w_1 \wedge w_2) = \sum_{j=1}^q a_j D_j$ with D_j irreducible curves and let $\nu_j : \widetilde{D_j} \to D_j \subseteq S$ be the normalizations.

Lemma (the bound on m)

Let $\phi: V_m \to S$ be a closed immersion supported at x. If ϕ is w_i -integral for both i=1,2 then

$$m \leq \sum_{j=1}^q \sum_{y \in
u_j^{-1}(x)} a_j(\operatorname{ord}_y(
u_j^{ullet} w_i) + 1).$$

Bounds on Ux

A p-adic analysis argument implies that

$$\#X(\mathbb{Q}_p)\cap\Gamma\cap U_x\leq n_0(f\circ\gamma(z),1/p)\leq 1+\frac{p-1}{p-2}\cdot m(x).$$

• Assume $x \notin \text{supp}(D)$. We have m(x) = 0. Then

$$\#X(\mathbb{Q}_p)\cap\Gamma\cap U_x\leq 1+\frac{p-1}{p-2}\cdot m(x)=1.$$

- Assume x ∈ supp(D). We use: the Riemann hypothesis for singular curves, intersection theory computations, controlling singularities of D, etc.
 - When we sum over all of these points, we get a bound in terms of the prime p and $c_1^2(X) = (D.D)$.

Last step

$$\#X(\mathbb{Q}_p) \cap \Gamma = \sum_{x \in X'(\mathbb{F}_p)} \#X(\mathbb{Q}_p) \cap \Gamma \cap U_x \le \sum_{x \in X'(\mathbb{F}_p)} \left(1 + \frac{p-1}{p-2} \cdot m(x)\right)$$
$$< \#X'(\mathbb{F}_p) + \frac{p-1}{p-2} \cdot \underbrace{\left(p + 4p^{1/2} + 5\right) \cdot c_1^2(X)}_{\text{terms } m(x) \text{ for } x \in D(\mathbb{F}_p)}.$$

Part III: A refined Chabauty–Coleman bound for surfaces

Algebraic points on curves

Let C be a nice curve of genus $g \ge 3$. For 0 < d < g, we define

 $C^{(d)}$ d-th symmetric power of C.

 $C^{(d)}(\mathbb{Q})$ parametrizes degree s-points for $s \leq d$. We have $\phi \colon C^{(d)} \to J_C$ and we define $W_d := \operatorname{Im}(\phi)$.

Example (d = 2)

When C is not hyperelliptic, ϕ is an isomorphism. Then

 $W_2(\mathbb{Q}) = \{ \text{unorder pairs of rational points } \& \text{ quadratic points} \}$

Application: quadratic points

A consequence of Main Theorem is:

Corollary (C-, Pasten)

Let C/\mathbb{Q} be a nice non-hyperelliptic curve of genus g=3 whose Jacobian J satisfies $\operatorname{rk} J(\mathbb{Q}) \leq 1$. Let $p \geq 521$ be a prime of good reduction for C. Suppose that C' is not hyperelliptic and that $(C')^{(2)}$ does not contain elliptic curves over \mathbb{F}_p^{alg} . Then $C^{(2)}(\mathbb{Q}) = W_2(\mathbb{Q})$ is finite and

$$\#W_2(\mathbb{Q}) \le \#W_2'(\mathbb{F}_p) + 6 \cdot \frac{p-1}{p-2} \cdot \left(p + 4p^{1/2} + 5\right)$$

 $< \#W_2'(\mathbb{F}_p) + 7.2 \cdot p.$

Hyperelliptic case

Example

If C is a nice hyperelliptic curve of genus $g \ge 3$, $C^{(2)}$ is the blow-up of W_2 at the origin. The exceptional divisor is

$$\nabla := \overline{\{[(x,y),(x,-y)] \colon (x,y) \in C\}}.$$

Then

 $W_2(\mathbb{Q}) = \{ \text{unorder pairs of rat. pts. \& quadratic pts. lying outside } \nabla \}$

Theorem (Balakrishnan, C- '25)

Let C be a hyperelliptic curve/ $\mathbb Q$ of genus g=3 whose Jacobian has rank ≤ 1 . Let $p\geq 11$ be a prime of good reduction for C. Suppose that W_2' does not contain elliptic curves over $\mathbb F_p^{\mathrm{alg}}$. Then:

$$\#W_2(\mathbb{Q}) \le \#W_2'(\mathbb{F}_p) + 2p + 12\sqrt{p} + 7.$$

We implemented an algorithm based on our method with H. Pasten.

Input: hyperelliptic curve *C*.

Output: An upper bound for the number of rational points of W_2 .

Example

Let *C* be the curve defined by

C:
$$y^2 = x(x^2 + 4)(x^2 - 4x - 3)(x^2 + 4x + 2)$$
.

We prove $W_2(\mathbb{Q}) = \{0_J\} \cup \{P_i : i = 1, \dots, 6\}$, where

$$\begin{split} P_1 &= (0,0) + 0_J, \\ P_2 &= (Q) + (Q^{\sigma}), \\ P_3 &= \left(2\sqrt{-1},0\right) + \left(-2\sqrt{-1},0\right), \\ P_4 &= \left(-2 + 2\sqrt{2},0\right) + \left(-2 - 2\sqrt{2},0\right), \\ P_5 &= \left(2 + \sqrt{7},0\right) + \left(2 - \sqrt{7},0\right), \\ P_6 &= \iota P_2, \end{split}$$

$$Q=\left(rac{-13+2\sqrt{-14}}{9},rac{12560-7045\sqrt{-14}}{2187}
ight)$$
 and Q^σ is the Galois conjugate of Q .

Notice that for p=5 and $z=\overline{(0,0)}+\overline{(1,0)}\in W_2(\mathbb{F}_5)$, we have that

$$\{P_2,P_6,(2\sqrt{-1},0)+(0,0)\}\subset \textit{W}_2(\mathbb{Q}_5)\cap \overline{\textit{J}(\mathbb{Q})}\cap \textit{U}_z.$$

The annihilator of $J(\mathbb{Q})$ under the integration pairing is spanned by

$$\begin{split} \omega_1 &= (4+5+4\cdot 5^3+O(5^4))\frac{dx}{y} + (3+2\cdot 5+O(5^4))\frac{xdx}{y}, \\ \omega_2 &= (4+4\cdot 5+2\cdot 5^2+2\cdot 5^3+O(5^4))\frac{dx}{y} + (3+2\cdot 5+O(5^4))\frac{x^2dx}{y}. \end{split}$$

So, we have

$$(w_1 \wedge w_2) = (4x_1x_2 + 2(x_1 + x_2) + 3) \frac{d(x_1x_2) \wedge d(x_1 + x_2)}{y_1y_2}.$$

Then $D = Z_{W_2}(4x_1x_2 + 2(x_1 + x_2) + 3)$. Notice that $z \in D$.

We prove that:

- z is a singular point of D.
- z has two preimages z_1 and z_2 in the normalization map ν .
- For i = 1, 2 we have

$$\operatorname{ord}_{z_i}(\nu^{\bullet}w_1)=0$$

Then

$$m(z) \leq \sum_{j=1}^{q} \sum_{y \in \nu^{-1}(x)} a_j(\operatorname{ord}_y(\nu^{\bullet}w_1) + 1) = 2.$$

Finally, we have

$$\#W_2(\mathbb{Q}_5)\cap \overline{J(\mathbb{Q})}\cap U_z\leq 1+\frac{4}{3}m(z)=3.\overline{6}$$

Thank you very much for your attention!